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Figure 1: Idealized Experiment for Spectrum Analysis
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Figure 4: Frequency Response of Several Dominant and Subdominant Slepian Sequences
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Figure 5: Lowpass-Highpass Decomposition of Identity
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Figure 6: The Transformation H Characterizes a Projection onto a Subspace (HT)
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ABSTRACT

Among nonparametric estimators of the power spectrum, quadratic estimators are the only ones that
are dimensionally correct. In this chapter we motivate interest in quadratic estimators by setting up ideal-
ized experiments for spectrum analysis and deriving maximum likelithood estimates for narrowband power.
These idealized experiments show that quadratic functions of the experimental data are sullicients statistics
for estimating power. The maximum likelihood estimates show that low-rank projection operators play a
fundamental role in the theory of spectrum analysis. The projection operator plays the same role as a band-
pass filter in a conventional swept frequency spectrum analyzer. The mean-squared error of a maximum
likelihood estimator of power is inversely proportional to the rank of the estimator.

With our maximum likelihood results in hand, we turn to a systematic study of quadratic estimators
of the power spectrum. \We prove a fundamental representation theorem for any quadratic estimator of
the power spectrum that is required to be positive and modulation-invariant. The resulting estimator has
a multiwindow interpretation. The quadratic estimator may be tailored to produce a number of classical
estimators, including those of Schuster, Daniell, Blackman and Tukey, Grenander and Rosenblatt, Clergeot,
and Thomson. In one of its forms, the quadratic estimator is the maximum likelihood estimator for the
power in a narrow spectral band. In this form, the estimator projects data onto a low-rank subspace where
the power in the subspace is the estimate of the power in a spectral band. e complete our study of
quadratic estimators by bounding their mean-squared error. The results corroborate the bounds obtained
from the idealized experiments and bring a wealth of insight into the trade-ofl between model bias (or spectral
resolution) and estimator variance.

We tie up our results by illustrating a number of equivalent implementations for quadratic forms in




low-rank projection operators.




1.0 INTRODUCTION

In the theory of wile-sense <tationary time sertes. there s no confusion wiont the meanmg of the
term power spectrum. But what does it mean to estimate one. and what are the motivations for doing <o?
For Schuster [1! the motivation was to find hidden periodicities in meterological time series. and therefore
it was natural for him to form a “periodogram™ that would peak when periadic components of the time
series matched the period of lus analyzer. For Einstein 2). the motivation was to Jdetermuie the variance
of a Fourier series coefficient in a periodic expansion of a random waveform. Linstein’s variance expression
was, in fact. the power spectrum. e showed that the power spectrum was the Fourier transform of the
correlation function for the random waveform. This finding, refined and extended in Wiener's work on
generalized Fourier analysis [3], led to the generally held view that spectrum analysis was a problem of
correlation analysis. This was the point of view adopted by Blackman and Tukey [1].

The Schuster and Einstein views are actually compatible. The periodogram and the Fourier transform of
the estimated correlation sequence produce identical estimates of the power spectrum, provided tlie so-called
biased estimate of the correlation sequence is used. The mean of thie periodogram is a Bartlett-windowed
version of the true spectrum, and it converges to the true spectrum as the length of the data window increases
without bound. The variance of the periodogram does not converge to zero. meaning the periodogram is an
inconsistent estimator of the power spectrum. The basic problem with the periodogram is that it generates
roughly independent point estimates of the power spectrum at the same rate that 1t acquires new data,
leaving no room for statistical averaging. This problem was understood by Daniell, who proposed the use of
frequency averaging to stabilize the variance of an estimator of the power spectrum [53]. The closely related
ideas of segmenting, windowing, and averaging, as advocated by \Welch [6], are simply variations on Daniell’s
theme. All of these variations produce estimates of the power spectrum that are quadratic in the data.

In the sections that follow, we develop a theory for quadratic estimators of the power spectrum. \We
begin in Section 2.0 with a hcuristic discussion of the aims and approaches of spectrum analysis. \We set up
an idealized experiment and illustrate the role played by bandpass filters that concentrate power in a narrow
spectral band. We generalize this idea to linear transformations that concentrate power and discover Slepian

sequences [T] as the appropriate basis for building bandpass subspaces. In Section 3.0 we use this idealized




experiment to derive maximum likelibood estimates for the power in a narrow spectral band - Tlie estimuges
are yuadratic forms in the experimental data. \We analyze the mean and variance of the estunators and
show that the mean-squared error of a reduced rank estimator depends inversely on the rank. \We then show
that rank reduction is a necessity in any practical approach to power estimation. By introducing the idea of

:omplex modulation, we derive Thomson's {8] family of low-rank. swept-frequency quadratic estimators of

~

the power spectrum.

=

Quadratic estimators arise as sufficient statistics in an idealized experiment for measuring power |
a narrow spectral band. In Section 4.0 we prove a representation theorem for quadratic estimators of
the power spectrum that are non-negative and modulation-invariant. In our view, these are minimum
requirements for any estimator of the power spectrum, quadratic or not. We show that the resulting class
of quadratic estimators scales correctly when the data is scaled and preserves the lHermitian symmetry of
the power spectrum under time reversal. We compute the mean and variance of any quadratic estimator
of the power spectrum and derive a simple bound on the mean-squared error of a reduced rank quadratic
estimator. The result brings insight into the tradeoff between resolution and variance and produces resuits
much like the multi-window spectrum estimators of Thomson [8]. Our quadratic estimators subsume all of
the classical windowed and smoothed estimators commonly considered for spectrum estimation. including
those of Schuster [1], Daniell [5], Welch [6], Clergeot [9], and many others. In one of its more illuminating
forms, the quadratic estimator matches the maximum likelihood estimator for estimating the power in a
narrow spectral band. In this form the estimator projects data onto a low-rank subspace and uses the power
in the subspace as an estimate of power in the narrow spectral band. The projection operator is constructed
from Slepian sequences. The net result is that we have at least three interpretations of Thomson’s multi-
window spectrum estimator, each of which brings its own insights: (i} it is the maxinum likelihiood estimator
of the power in a narrow spectral band; (ii) it is a projection onto a low rank subspace, followed by a power
computation; and (iii) it is a reduced rank, frequency averaged periodogram (a reduced rank version of
Daniell's smoothed periodogram).

We tie up our results for quadratic estimators of the power spectrum by illustrating a number of

equivalent implementations. These implemnentations use projection operators, or thuir close cousins, Slepian




windows. and discrete-time Fourier transforms. A1l of our results may be extended in a straichitforward way

to the estimation of power in nonuniformly sampled time series "10], [11].




2.0 HEURISTIC BEGINNINGS

Spectrum estimation may be divided into two broad categories: (i) estimation of power in a narrow
spectral band, and (ii) estimation of a parametric spectrum model. The first category is often called classical
spectrum analysis, and the second is often called modern spectrum analysis. One of our objectives in this

chapter is to show that there are plenty of modern ideas in classical spectrum analysis.

Category (i) dominated the early work on spectrum estimation, beginning with the original work of
Schuster [1] and proceeding to the current work on windowed and smoothed periodograms. In our view. this
category represente the view of spectrum analysis that most closely captures the essence of the problem.

namely,

“from a finite record of a wide-sense stationary time series, estimate how the total power is distributed
over narrow spectral bands.”

The essential problem is to sweep a narrow-band spectrum analyzer through the Nyquist band in such a
way that the band is highly resolved and the estimates of power in narrow spectral bands have low variance.
Thomson’s 1982 paper [8] is the definitive work on multi-window spectrum estimation. It has brought new

insight into this problem and stimulated renewed interest in classical spectrum estimation.

Category (ii) has dominated the engineering literature since the publication of Burg’s 1967 paper on
maximum entropy and autoregressive models [12]. The key idea is to assume that the power spectrum
S:z(€’?) belongs to some parametric class such as the autoregressive class and then to identify the parameters
of the model from a record of measurements. Not surprisingly, there are connections between categories (i)
and (ii). The first was established by Parzen [14] in his original advocacy of autoregressive (AR) spectrum
analysis as a method to smooth rough periodograms. Parzen was also the first to recognize the importance of
order selection, which is akin to rank reduction, for the control of approximation error in spectrum analysis.
In Section 3.0 of this chapter, we shall establish a second connection. We shall show that the problem of
estimating power in a narrow spectral band may be rephrased as a problem of estimating parameters in a
structured covariance matrix. This point of view has previously been exploited indirectly by Burg et al [13]
and more directly in [16]-[18]. The resulting estimator of power in a narrow spectral band is a projection-
based spectrum analyzer that may be interpreted as a reduced rank. frequency averaged periodogram.

6




2.1 The Power Spectrum and Quadratic Estimators

The variance. or power, of a wide-sense stationary (WSS) time series {r,} may be written as the integral

7 o df
ro = /S:r(ejo)i;a (1)

-%

where Sz (€7%) is the power spectral density of the time series and S;;(e/®) £ is the infinitesimal power in

the band {o— % <§< o+ %} This infinitesimal power is just one variance component in an infinite set of
infinitely resolved variance components. It is surely unreasonable to estimate such an infinite set of variance
components unless, of course. the set is smoothed or finitely parameterized. This suggests two approaches,
corresponding to the classical and modern theories of spectrum analysis.

The first appioach is to replace the infinitely resolved variance components S (e’?) f—_,’% by the finitely

resolved (or smoothed) variance components

ro(¢) = / Szz(e7%) & (2)

27
B(%)

The band B(¢) is typically a passband, and rg(¢) is the power in the band. This formulation shows spectrum
analysis to be a problem in the analysis of variance (ANOVA), a problem where the estimation of infinitesimal
variance components is replaced by the estimation of finite variance components.

- The second approach Is to use an understanding of the underlying physics to parametrically describe the
spectrum, and use a statistical theory to identify the parameters. This formulation leads to the estimation
of autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) power spectra.
The resulting theory is closer to the theory of rational model identification (from output data) than it is to
the theory of spectrum analysis.

If we choose our parametric model of the spectrum to model power in a narrow spectral band, we can

bridge the gap between thiese two approaches.

2.2 Ideal Filters
When we represent the power of a time series by its variance components, we interpret rg(d) to be “that
part ot the total power that lies in band B(8).” But this is evidently “the power in that component of the

time series that lies in band B(¢).” How can we estimate this power? If we had an infinite record of data and

7




infinite computing resources, we could pass the data (or signal) through the ideal bandpass filter illustrated

in Figure 1. The frequency response of the ideal filter Hp () is

mae) = {5 3% o, @
where
B(¢)={f:10 —o| < Ir}. (1)
The filtered signal
{v} = Hp(){z:} (5)

is surely what we mean by the phrase “that part of the signal {z,} that lies in band B(6).” The variance of

Y is the power in the band:

, 5. d8
(e = Elul = [ Seale) 2
B(o) 6)
V]
i . d6
= E T / 6’_‘)‘8 7;
t=—o00 B(o)

This result shows that the power in the band depends on the entire covariance sequence {r;}=, for the time
series {r:}. If one adopts the point of view that spectrum analysis is a problem in correlation analysis, then
one is forced to estimate an infinite number of correlations or to impose a parametric model for extending
them outside some range of indexes for which they can be estimated.

Under an appropriate ergodic assumption, the estimator
M

. _ 1 9 (-
7'0(¢) - 2N + 1 t—z‘-\! |yf| '\‘)

is a consistent estimator of the narrow-band power ro(6). This estimator may be written as the quadratic

form
oo
7"0(¢) = Z IndnmIm, (®)
nm=-=0ce
where
M
1 Y\
nm = T hienhiem. qQ
Inm 2A”+l(=h_‘”tnrm (M

In the limit as A\f — ~, the doubly indexed sequence q,,m depends only on 1 — m. and the quadratic form
is Toephtz. Grenander and Rosenblatt call such a Toephtz quadratic form a spectrogram {19].

8




2.3 Complex Demodulation and Frequency Sweeping

When the time series {z,} is real, as we shall assume, then the power spectral density S, (e’%) is
symmetric about 8 = 0. The power in the narrow spectral band B(¢) is twice the power in the upper
sideband B, (o) illustrated in Figure 2(a). But the power in this sideband is just the power in the complex
demodulated signal {e~?°'r(} that lies in the baseband B = {¢ : =37 < 6 < 3x}. This property follows
from the fact that S (e/'**®)) is the power spectral density of the demodulated signal, and the power in

the upper sideband may be written as

o+Iix
= r0(6) = / Seele?) 22
¢—;w (10)
= / Sr:(ej(“°))g—:
.

See Figure 2(b) for an illustration. This finding permits us to replace the idealized experiment of Figure 1
by the idealized experiment of Figure 3. In this experiment, the time series {z,} is complex demodulated in
order to sweep the upper sideband down to baseband where it is filtered by the ideal baseband filter H(3).

The estimator

. . M
5’"o(¢)= m‘g‘!wd' (11)

1s a consistent estimator of the power in upper sideband B4 (é) and of one-half the power in passband B(¢).
2.4 FIR Filters

The basic idea embodied in the alternative experiment of Figure 3 may be turned into a practical

alternative if we replace the ideal baseband filter Hg(z) with a causal, finite-dimensional FIR filter 77(z):

N-1
H(z) = hp:—"
Z " (12)
=hTw(:).
where
Y(:) =]l PR ---:'(‘\"”]T: h = (A hlu-h;\;_l]r. (13)

If the filter H{:) is to have properties analogous to those of the ideal bandpass filter, then it should be
as frequency selective as we can make it. One way to measure frequency sclectivity is to pass white noise

9




through the filter and measure the output variance:
7 do
re = /’H(e’g)l'z_)—thh. (1
2w
-7

The part of this power that lies in baseband B is

ro(B) :/[H(e”’)[gg—[)‘ (15)

T
B
If we use the representation H(:) = h7 ¥(z), we may write this power as
; ia, df
ro( B) :hT/\Il(eJa)\Il'(e”);h
5 g (16)
=hTRh

where the Toeplitz matrix R depends only on the baseband B:

R= /\n(ef”)w*(eﬁ) % = {rm-n} (17)
B
Bx
Tmen = / elftm=n) il = Jsinc[dr(m — n)].
e 2T

We would like to make I{(:) as frequency selective as we can by maximizing ro( B). under the constraint

that ro = hTh = 1. This leads to the following problem:
max h7 Rh subject to the constraint h”h = 1. (18)
The solution is to make h the dominant eigenvector u;, corresponding to the maximum eigenvalue A3, of R:
R=UAUT  (RU =UA) (19)
U=[uus---uy]  A2=diag(A33 - 2%) Al>al>...> %

The eigenvectors of R are the Slepian sequences featured so prominently in Thomson's paper [8].

In summary. the most frequency selective FIR filter h for band B is the filter
H(z) = hT¥(z), (20)

where h = u; is the dominant Slepian sequence for baseband B. When {y,} is the output of this FIR filter,

the consistent estimator

M
1 - "
) - , )
ro(0) XV ,_;\, Ll (20

10




15 a Toeplitz quadratic form as long as M > N,

2.5 Linear Transformations

These results may be generalized by considering a problem that is closer vet in spirit to practical
estimation of power in a spectral band. The idea is to replace the FIR filter }/(z) by a lincar transformation
H that maps an .N-dimensional record of the modulated time series {e~7%'z,} into an m-dimensional record

of transformed measurements:

y = HD(e77®)x, (2
where
y=[mwuy - um): x=[rpzy--rN_1)0; D(e’®) = diag[l &/® .. eV -11?] {23)

H= . om< N, 2n

The frequency selectivity of the linear transformation F is measured by passing white noise x through it

and measuring the average output variance over the m output components:

1

ro = —E[[y”g = -I—Etr[f[XXTHT]
m m
| x | | {25)
— —-tr[f{/‘l’(ew)\ll*(ew) ﬁ[{T].
m 27

-

The part of this variance (or power) that “resides in band B” is

ro(B) = %tr[f{/\ll(e”)\ll*(e”) g%HT]
B (26)
= }-tr[HRHT],
m

where R is the matrix defined in Section 2.4.
If the linear transformation is to have properties like those of the linear filter H(:), then we would like

it to maximize ro(B), under the constraint that each row of / have unit norm:
max tr[/{ RHT] subject to the constraints cTc, = 1 (n=12,....m). (27)

The problem is to find the saddle points of the Lagrangian

L= i": c;,rl?c,, - i/ln((iz(?n -1). (2%)

n=| n=1

11




Necessary conditions are

Re,, = ,\ " Cn (29)
for each n. This makes ¢, the n'® dominant eigenvector of R and p, the corresponding eigenvalue A2. The
resulting power in B is

1 1 m
ro(B) = —trf[HRHT]= =) "L 30
O( ) m [ ] m z n ( )
n=l
The linear transformation H may be written as a matrix of Slepian sequences
uf
uf
H=| . (31)
uy,

2.6 An Illuminating Example

Let's try to illustrate the frequency selectivity of the linear transformation /. The variance ry may be

rewritten as

mz—uﬁ/ww%ww%—ﬁﬂ

= —Z/’uT\P(eﬂ it (32}
2d
-1y / Eate)]” 52
n—l 2w
]U,,(ejo)lz = u:\ll(ejo) : frequency response of the n'" Slepian sequence.
The component of this variance that lies in band B is
(33)

1 2 df
ro(B) = — Un(e’®
w2 [ e
So, the frequency selectivity is measured by the average of the frequency selectivities for the m eigenvectors

u,.
Let's choose N = Gland B = {0:-37 < 0 < 37, 3 = 1/16}. The resulting time bandwidth product
is N3 = 1. The number of dominant eigenvalues of R is 4 (the time-handwidth product). The frequency
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response of several Jominant and subdominant Slepian sequences is illustrated in Tigure 1. The frequency

response of the first four eigenvectors, namely

4 2
> |Ua(e?®)]. (31)
=1

i~ plotted In Fizure 3. together with the frequency response of the remaining sixty eigenvectors, namely

[ o)
ot
—

64 ”
Do Ia(e). (:

n=5

These results show that the dominant eigenvectors concentrate power on the band B. The subdominant ones
do httle in the way of concentration. In fact, their frequency selectivity is concentrated out-of-band. The
results of Figure 5 may also be interpreted as follows. The frequency response of an identity transformation
1

~

N =) B(e) = W) Y uan[u(e)

=1 (36)

= U (Y PU(e?) + W () (I = PIV(F).

where P is the rank-m projection built from the dominant Slepian sequences. The frequency response of the

projection is just the frequency response of the dominant eigenvectors:

() PU(e?) = D Uale’®)], (37)
n=1
where
P= Z u,,uz; =HTH. (38)
=1

It is clear that the linear transformation H characterizes the projection P, whose range is a low-rank subspace

where most of the power in the band B is concentrated. This is illustrated in Figure 6.

2.7 Maximum Entropy Interpretation
There 1s another way to describe the m x N linear transformation /I derived in Section 2.5. It is a linecar
transformation that produces a maximum entropy version of white noise, under the constraint that the rows

of /I are normalized. The resulting entropy of y = [/x when x is white is

E=-In [(?rrc)"m/?(det IIIIT)_’/?]
(3N

m
ny ]n('..)TI'C).

-~




The random vector y = f{x is also as white as it can be, with covariance
Ry, =Eyy" = Ellxx"1" = 1. (-10)

and its prediction error is as large as it can be.

The norm-squared of y may be written as a quadratic form in the projection operator P:

yTy

xTHT Hx
(41)

xTPx = || Px||*.

The linear transformation /I that maximizes entropy also characterizes the m-dimensional subspace (HT)
where the largest fraction of the power in band B lies (and vice versa). This power is approximately the
integral of the m-dominant frequency responses [Lf",,(e-"")l2 over the band B:

EyTy = tr[P]
de

2 _ . i6y2 4Y
3 el _n;_[tcn(ef T
“ . 2 df
EZ/WWHg
n:lB
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3.0 MAXIMUM LIKELIHOOD ESTIMATION OF POWER

WWe shall begin our study of maximum likehhood theory. and its application to spectrum analysis.
by returning to the experimental setup illustrated in Figure 1. However. we now ask what happens when
only the finite snapshot y = [yo y; -~ yxv—1]7 is available to the experimenter.

Let us assume that the time series {r;} is Gaussian and wide-sense statiorary {WSS). with mean
zero, covariance sequence {r;}. and power spectrum S;.(e’?). The snapshot y is then a normal random

vector. [ts mean is zero and its covariance matrix Ry, is related to the power spectrum of {r,} as follows:

Ry, = Eyy' = / Ser(e7)W(e?®)¥e(e?f) gg (13)
B(o)
The vector W(e??) is called a Fourier vector: when evaluated at § = 2xm/N. m=10.1...... N — 1.1t s called
a DFT vector.
Our shorthand notation for describing the snapshot y is
y - N[0. Ry, ). (44)

It is clear that the information about the power in band B(o) can be carried only in the covariance structure
of y. The covariance matrix R,, i1s Toeplitz. meaning that the power in band B(o) is related to R,, as

follaws:

da

7 (13)

ro(o):‘\iv”[Rvy]: /Srz(eje)
B(¢)

The problem of estimating the power ro(0) in the band B(¢) is a problem in estimating the trace of R,.
In maximum likelihood theory. the invariance theorem shows that the problem of estimating tr Ry, is a
problem of estimating Ry, and then finding its trace. This brings us to a discussion of maximum likelihood
estimation of covariance matrices. In the discussions to follow. we replace ro(¢) with the notation rg in order

to simplify notation. But rg is always ro(0). and estimates 1o are always estimates ro(0).

3.1 Maximum Likelihood Estimation of the Covariance Matrix

The flow of ideas for parametric spectrum analysis is illustrated in Figure 7. In the figure. S, (¢2°)
and ro denote the spectrum and correlation sequence of {y, ;. If the measurements are drawn from this wide-
sense stationary time series. then the covariance matrix for the measurements may be constructed from the
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covariance sequence. The covariance matrix is denoted R,,. If the measurement sequence y 1s multivariate
normal. denoted y : ,\'[O.Ryy]. then the covariance matrix R,, may be estimated from a criterion like
maximum likelihood. The estimated covariance matrix is then used to estimate the spectrum. Generally. the
covariance matrix R, has some special structure, with unknown parameters. Procedures such as maximum
likelihood for identifving the parameters are generally very complicated because the parameters are imbedded
in the determinant and inverse of a covariance matrix. However, if the time series is autoregressive, linear
prediction approximately solves the maximum likelihood problem [13].

In the theory of maximum likelihood (ML), information about the covariance matrix is carried in

the log likelihood function L(Ry,;y):

1
~yTRly. (16)

N 1
L(Ryyi}’)-’—'?IH(Q:T)-;lndetRw—‘z Y

The structured covariance matrix Ry, we denote by Ry (@), where @ is a set of parameters 8 = (6,8, --6,).

The maximum likelihood equation for determining the maximum likelihood estimate R,, = Ryy () is [15)]

J
tr R.;;(Rw—ny) é;_v_y_} =0 (n=12.... OB (1
The Fisher information matrix is
J ={Jmn} (48)

_ 1 -1 aR!/!/ -1 61?‘!!{
Tmn = G tr Ry ot Ry} S|,

and the Cramer-Rao bound on any unbiased estimator of 4 is
M=E@-6)@-0T>J"" (49)

Any estimator that achieves the bound is efficient and minimum variance unbiased (MVUB).
In the following section we show how to apply these general results to the problem of estimating

power in a narrow spectral band.

3.2 Unstructured Covariance
When no structural information about the covariance matrix Ity is known. then the ML estimate
of 2., is
Ryy = yyT, (50)
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and the corresponding ML estimate of the power in band B(d) is

o
ro = T irlyy’]

(51)
_1. 7
=3 Yy
The mean and variance of the estimator are
. 1 T 1
Ero = Ftr[Eyy ] = K’-"[Ryy]
.. db (52)
= Srz' 18y —
[ et 32
B(&)
- 2 o -
varrg = R,-:,—tr[R;y]. (33)

N

This is a very primitive estimator of the power that exploits none of the prior information that we have
about Ryy. For example. we know that Ry, is Toeplitz, and this information can be used [13]. But more
than this. we know that Ry, should have a special spectral representation that it inherits from the ideal

bandpass filter Hg(e’?). This is the idea that we exploit in the next section.

3.3 Structured Covariance
The real. symmetric. non-negative definite covariance matrix R,, has the spectral. or orthogonal.
representation
Ry =USUT, UTU=1 (54)
U = [ujuy - uyl; T? = diag(oiol - o). (53)
We shall assume that U is a known orthogonal matrix and £? is an unknown diagonal matrix. We shall

represent the diagonal matrix £? as

T2 = roA?; A% = diag(A2A3-.-23) (56)
1 N

T Y oaz=1, (57)
n=1

With this representation of R,,, the unknown parameters are ro, the power in the band, and the nuisance
parameters {A2}¥. The normalization of the parameters {A2}{’ preserves the connection between ry and

%"”[Ryy]f : |
ro = ‘,_\' tr[Rw] =Ty ;\-i_-tr[.\:']

=7rg.
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The log-likelihood function takes the very special form

N

2 -N 1 a
L(ro, {32}15y) = = In(2m) = 5 In [T rod? - Z A9y Py

n=1

(39)

In this likelihood formula, P, is a rank one projection onto the subspace spanned by the n'! eigenvector u,
and yI P,y. is one of N sufficient statistics:

yZP,,yn : sufficient
T
n

P, =u,u;.

This finding is important because it shows that, whether or not we use a ML theory, the quadratic forms

}N

Let’s maximize likelihood under the constraint that the {A2}

yT Py, are sufficient statistics for the parameters ry, {32

average to one. The appropriate
Lagrangian is

Eln roA; )—Zr Y yIP,y - p(Nz/\‘ —1)

(61)
The gradients of £ with respect to ro and A2 may be equated to zero to produce the ML equations
oc 11
T N =™
G =0 Z STY Pay = N =07 (62)
o = ro T 1 uo_
2 = oY Py w0 -
11 r H 2 _
= /\gy Pny—l—N-An =0.

The constraint may be invoked in the second of these equations to show that the constraint plays no role in

the minimization:

1 1 &1 gl
1l torp (B 15y
-] = —= —_ =
1 N 0 u=20
The maximum likelihood estimates of ro and A? are
AV
1 1 r .
ro = N — /\: y nY (6))
. 1 o
A==y Poy
T'o




There are actually two important results here. First, if the {A2}¥ are known, then the ML estimate of g is

1 &
=V2=:

yTP,y. (G6)

‘!J

Second, if the {A2}1 are unknown, then the normalizing equation may be used to rewrite ry as

1 o~ 1 1 &
TZA& == T Y Py (67)

These two findings. illustrated in Figure 8, show that the ML estimate of the power in band B(¢) is quadratic

in the data.

3.4 Mean and Variance
The mean and variance of our two estimators are computed from the mean and variance of the

quadratic, sufficient, statistics y? P,y. The rank-one projection P,y is distributed as
Pay : N[0, 1Al AR] (68)

A, = diag(0---010---0).

This makes the quadratic form y7 P,y = ||P,y||?> a scaled chi-squared random variable with the following

mean and variance:

EyTP.y = ro)} (69)
varly” Pay] = 2(roA3)>. (70)

It is easy to see that the sufficient statistics are uncorrelated and therefore independent:

E(Poy)(Pmy)T = PaRPn

(71)
= A?,u"uZémn.
This means that we may add variances at will to compute the variance of rg.
Unknown {)2}¥. When the eigenvalues of R are unknown, then the ML estimate of rg is
N
Fo = —-ZyTPny (72)

n=1
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The mean and variance of this estimator are

N
Efg = Z A2 = (73)
‘ar Fr = __1__ > 242 _ 27'0 2
varfo = <3 D 2Arrl)? = Z(A _ (74)
‘ n=1

It is interesting to ask which distribution of the unknown {22} minimizes the variance, under the constraint

that + Z: A2 = 1. The obvious answer is A2 = 1 for all n, in which case

o
2r;

varrp =

This question is much more fascinating, and the answer more profound, when the estimator is replaced by
a low-rank approximant. We take up this question in Section 3.5.
Known {A2}. When the eigenvalues of R are known up to the scale constant ro, then the ML

estimate of rg 1s

1 <A1
h — T -
To—‘ﬁzl\— Pny. (46)

n=1

an

The mean and variance of the estimator are

“J»

(roA2) =g (77)

N
"TL
. 1
varro = ——2- E

This latter finding is very important because it establishes the lower bound on the variance of any unbiased

alJ

2
2r;

2(1‘0/\,21)2 = N .

(78)

:IJ

estimator of the power in band B(¢). Why do we say this? Because the idealized experimental setup
illustrated in Figure 1 preserves all information about the power in the band, and the snapshot contains all
of the information that one can get in a finite snapshot. The assumption that the eigenstructure of R is
known up to a multiplicative constant in the eigenvalues represents as much apriori knowledge as one can
have about the spectrum S:;(e’®) without giving away its power in the band. Without prior knowledge of
the normalized eigenvalues {An}{, the minimizing distribution of eigenvalues produces the same minimum
variance. Thus, for any unbiased estimator of the power in the band,

var / See(e??) ) > %( / See(e?®) g%)g‘ (79)

B(#) B(¢)
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3.5 Reduced Rank Estimators

The estimators we have <o far derved arc Jdefective in the sciuse that they require detailed kuowleage
of eigenstructure for their implementation. Typically, such knowledge is hard to come by because eigenstruc-
ture for subdominant spectral modes is notoriously unreliable. So, what if we replace our ML estimators by

low-rank approximations of them?

Unknown {A2}{¥. The obvious low-rank approximation of 7 is

1 .
rO:F"ZlyTR,y. (80)
The mean and variance of the low-rank estimate are
1 m 1 m
Eﬁ(,:VZ(roA?,):rONZ,\ﬁ (81)
T on=1 n=1
L1 o2 208 1N a0 -
varfg = 'v'z'z 2rod2)? = 2 ?Z(,\;)-. (82)
7 n=1 ! Y on=l
The mean-squared error of this reduced rank estimator is
MSE(m) = E(ry — 1) = (E #o — 70)% + var s
I 5,2 o 2\, 28 1 g~ 2
‘(r"ﬁZ’\n—"OﬁZ’\n) +Tl-—v'z_:(’\n) (83)
n=1 n=1 n=1
2 N 2 2. m
_To 2%, 215 242
= N_z( > An) + 57 20
n=m+1} n=1

This mean-squared error may be minimized with respect to the {A2} by minimizing the Lagrangian

N 2 m 1 N
c=( > ») +2Z(,\3,)2—;1(7V—Z/\,2,—1). (84)
n=1 n=1

n=m+1{

The resulting regression equations are

:42—i:
n<m DY A2 N 0
2 _ M
" T4N
N
e . M
n>m.0A2—2 Z /\H-T_O
n n=m+1
f: ,\"..2_"
T4N
n=m+1[
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Invoke the constraint to solve for u:
(

0D
[
=

v .
l 2 _ | mp I 2p
NT;’\" =vivTyviv!
_ 4N? _ B N
T m42’ AN m+2
The resulting minimum value of mean-squared error is
2 N 2 2 2 N 2
MSE(m) = <5 (—2‘—) + 22 m(—=)
N2 \m+2 N2 m+ 2 5
s (86)
_ 2r;
T m+2

This result establishes the lower bound on the mean-squared error of any low-rank estimator of the power

in a band.

Known {)2}Y. The estimator

—_
[0 2]
-1

~—

11 o
A— 3 — E —vTp
7'0 ﬁ N ~ ,\;21 y ny
. The mean, variance, and mean-

is the obvious low-rank approximation of 7y when the {A\2}#' are known

squared error of £y are
. m
Efy =18 ~ (88)
- 232 1 9
var #g = 2r3f3 7 m (89)
.2 Bmy2 242 1
MSE(m) = r2 (1 - T\T) +2r36% —m. (90)
The minimizing value of 3 is
N gm 2
- . 1- Y— = ==,
and the corresponding minimum value of MSE(m) is
2 2 1 2
N e 2 2
MSE(m,._ro(m+2> +2r0(m+2) m o

2
_2r5

=
This result matches our previous result, leading to the conclusion that the mean-squared error of any low-rank

estimator of the power in a band is bounded as follows:
dd \?
=) (93)

- . df 2 ;
MSE( _/ See(e??) 5:) 2 m+2 ( / Sex(c?) 27
B(¢)

B(¢)
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3.6 Complex Demodulation and Frequency Sweeping

In dectiva 2.5 we argued that the power in the time series {r¢} tha. is concentrated in the narrow
spectral band B(¢) is twice the power in the complex demodulated time series {e~7®!z,} that is concentrated
in the baseband B. This property follows from the fact that the covariance sequence for the complex
demodulated sequence is {e~7®'r,} and the power spectrum is S, (e/(¢+8)).

Let’s assume that the complex demodulated sequence is filtered by the ideal baseband filter H(:).
illustrated in Figure 3. The complex snapshot observed at the output of the filter is y = D(e7%)x, and its

covariance matrix is Ryy:

y = D(e7®)x (94)
x 1(840) 1O\ *( 079 dé
Ryy = Eyy™ = [ Sea(e "N ()7(e77) =
’ do (93)
= D(e™7%) / Sex(e°)U(e°) U () o= D(e7°).

B4(o)

We have used the identity ¥(e/(®=®)) = D(e~7%)¥(e’?) to derive these two equivalent formulas for Ry,. The
covariance matrix Ry, may be rewritten as
) -jo i8 oy g rr iy 38
D(ei)Ryy Die™ ) = | Seele®)U(e?) () 5-. (96)

B4 (¢)

The covariance matrix on the right-hand side belongs to a complex snapshot whose spectrum is concentrated
on the upper sideband B, (¢). The covariance matrix on the left-hand side belongs to the modulated snapshot
D(e’®)y. The two snapshots are equivalent.

The power in the complex demodulated snapshot y is the power of the original signal that is
concentrated in the upper sideband B, (¢) and half the power of the original signal that is concentrated in

the narrow spectral band B(¢):

1 dé
1(6+9)
VtrRyy-—/S (e )27r

(97)
/ m\e,o _1 / Sun(e®) d0. 7
+{®)

B(O)

Elyl|2

]

If the power spectral density S, {¢’®) is slowly varying in the band B(¢), then the translated spectrum
Se(e718+2)) is slowly varying on the band B. This means that the power in the narrow band B(o) is
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approximately
N 9 (10 _ , T
rald) = / S.-_.-(CJ ) -z—n: = 23q:”.(€] ) (':"S)

B(¢)

The covar.ance matrix Ry, is approximately

Ry = 5ex(e?®) [W(er)0r(e) 32
B

(99)
. 1,
= S:z(€*)R = ﬁroké)R
where R is the baseband covariance matrix derived in Section 2.5:
R= /W(ei")\p*(ei’) f—o (100)
<
B
The trace of R is the time-bandwidth product N3 and i tr Ry, is half ro(#):
1 1
R—tr[Ryy]z §r0(é) (101}

Our ML results may be applied without change to the estimation of ro(¢) in the model V2y : N[0, ro(0) L R].
with %rtr-}R = 1. For example, when the eigenvectors of R are known but the eigenvalues are assumed

unknown. the reduced rank estimator of ro(¢) is

L 2 2 —; 2 )

Fo(¢) = 7 IPyIIP = 5 [[PD(e™7)x]] (102)
P= Z u,ul; u, : eigenvector of Ru = Au.

n=1

This estimator uses a complex demodulator to generate the snapshot y and the rank-one projections illus-

trated in Figure 9.

3.7 Reducing Rank and Removing the Bandpass Filter

Our most refined experiment for spectrum analysis is depicted in Figure 10(a). The complex
demodulated signal {e™7%'r,} is passed through the ideal baseband filter H(z), the resulting snapshot y is
projected through P onto the subspace spanned by the m dominant eigenvectors of R, and the power in that
subspace is used to estimate the power in the narrowband B(¢). As illustrated in Figure 5, the projector
P is very selective in frequency when the rank m is chosen to be the time bandwidth product m = N43.
This means. for all practical purposes. that the ideal baseband filter H(:) may be removed to produce
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the prartical diagram of Figure 10(b). The diagram of Figure 10(b) may be redrawn as in Figure 10(c}).
In 10{c}, a snipshot of d~ta - = (zor) - -Tyv-1) is complex demodulaied with tlie demodulation matrix
D(e™?°) to produce the complex demodulated snapshot y that is then projected onto a subspace where the

norm-squared is computed and scaled to estimate power.

3.8 Projection-Based Spectrum Analysis

The spectrum estimator
: 036 (ei®) = 2 -ieyxlI?
Fo(0) = 285:2(e%) = ||PD(e™7%)x|| (103)

is nothing more nor less than the norm-squared of a complex demodulated snapshot that has been projected
onto a narrow band subspace. A geometrical interpretation is presented in Figure 11. The complex demodu-
lation matrix D¢e 7°) is a unitary, or rotation, matrix that simply rotates the measurement vector x into a
position in complex Euclidean space where its projection onto the “baseband subspace (77,}" may he “1sed
to estimate the power in band B(¢). When this procedure is carred out for all ¢, the pc -r spectrum is
mapped out. The result of equation (100) may be rewritten to make it look like Thomson's [8] multi-window
spectrum estimator. Let’s write the spectrum estimator as

w3l 2 wtote o

m

= NLﬂ S Jul D(e7e)x’.
n=1

S'r:(ejé)
(104)

In this form, the complex demodulated vector D(e~7#)x is correlated with the Slepian sequences {u,}*, and
the squared magnitudes are summed. This is illustrated in Figure 12(a). The inner product uID(e‘j")x

may also be written as follows:

ul' D(e™7*)x = xT IV, ¥(e/?), (105)

where 117, is the diagonal window matrix constructed from the n*" Slepian sequence and W(e’®) is the Fourier
vector:

W = diag(un (1) un(2) - un(N)) (106)

o = (un(1) ua(2) (V)T
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The estimator

Srr(e7®) _Z |xT W (el?)|’ (107)

Lg

is a multi-window spectrum estimator wherein the sequence x is windowed with Slepian sequences, and
the resulting sequence is used to compute the windowed periodogram ‘-{TIXTH’,,\II(ej")F. ‘Then m such
periodograms are averaged. as illustrated in Figure 12(b).

One final interpretation—the multi-window, or projection-based, spectrum estimator is essentially a
reduced rank, smoothed periodogram. To see this, consider the smoothed periodogram originally advocated
by Daniell [5]:

SZI(€J¢)

e [ S 2

B(9)
231/ | Z Saindll

_ 1 7 jo/ oy .50y 9 H —je
= Nﬁx D(e’®) [ w(e?" )W (e )27r D(e™%)x
B

2w (108)

1 T . )
- (1@ LAY
N3 x' D(e?®*YRD(e™7%)x

I

This kind of quadratic form will be studied extensively in Sections 4.0 and 5 0. For the time being, we simply

m
observe that, when the covariance matrix R is replaced by the approximation R = Y u,u’, the Daniell
n=1

smoothed periodogram becomes the projection-based, or multi-window, spectrum estimator

m
2 a7 D)

||PD(e™7*)x||* (109)

m

= NIEZ |w* ()W, x|’

n=1

Sez(e7®) = -

|._ <|._
Q

N

w
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4.0 REPRESENTATION THEOREM FOR QUADRATIC ESTIMATORS
The covariance sequence {r;} and the power in a narrow spectral band B(¢) are the two most
elementary linear functionals of a power spectrum that are encountered in the study of WSS time series.
The power in a narrow spectral band, namely
de
ro(0) = / Sez(€7) 5= (110)

v’
B(¢)

characterizes thie local power of the spectrum. The trigonometric functionals
dé
ro= /5: e)%)el — = (1nn

characterize the entire power spectrum S;.(€’?) via
Ser(e??) ; ree= 118 (112)

Linear Functionals of the Power Spectrum. The experiment illustrated in Figure 13 shows
how other quadratic forms may arise naturally. The sequences {u,;} and {v} are the outputs of two filters,
F(z) and G(z), driven by the common input sequence {r,}. The zero-lag rross-covariance between the

outputs is
6 6 PN
Eupvy = [ F(e?%)S:(e?7)G(e’7)

s (113)

The quantity ucvy is quadratic in the data {r,}, and the expectation of this quadratic form is a linear
functional of the power spectrum S;z(e’?). In fact, the expected value of every quadratic form in {r,} is a
linear functional of the power spectrum S,.(e’?).

If we take

F(e'®) = G(e?®) = Hp(e’®) (114)
(where Hpg(el?) is the ideal bandpass filter of Figure 1), then the outputs uy and v, are
U= Uy = Yr. (115)
The sequence {y} is that part of {z,} lying mn the band B(o¢). Equation (113) is then

do
(e )? /!Hnw” Spele?®) =, (116)
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which 1s the same as equation (6).
If we were to let

G(e?y = 1. (117)

then y, = r, and the right-hand side of equation (113) becomes

x

/ F(e7)S2s(e?®)

-x

do
27’

which is a “general” linear runctional of the power spectrum S,.;(e’?). Every such linear functicnal is the

expected value of a quantity which is quadratic in the signal {z,}.

Finite Quadratic Forms. Every quadratic function of the finite data vector x = [rg - rx_;]7

has expectation
x

. de
E[x*Qx] = /f'(e’g)S”(eﬁ)Q—T. (118)
where
N-1N-=-1
Fe*)= 3 3 qume 7. (119)
k=0 m=0

(This is a trigonometric polynomial.) Every such quadratic form delivers an unbiased estimate of a linear
functional of S(e’?). The family of all such quadratic forms provides information about the power spectrum.
but not enough to completely characterize it. Since

Elx*Qx] = Z > Gkmeom, (120)

N-1N-1
m=0

"

=0
we see that only those values of ri in the range —N < k < N are involved. Estimates of r; outside this
range necessarily depend on some “model” or functional form for S(e’?) or involve extension principles like
maximum entropy (which forces a model indirectly).

If one does not want to assume a model, then it becomes necessary to admit that we can know
something about S;.(e’?) but that we cannot know it completely. Each linear functional of S:{e??) forces
it into a hyperplane in function space. Knowing the values of n linear functionals forces S;.(e’*) into the

intersection of n hyperplanes. This is still an infinite dimensional space.

4.1 Estimator Propcrties
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Assunung that we have azreed to consider only quadratic estimators. we must still decide wihich
quadratic form to use and we must decide how compelling the results of Sections 2.0 and 3.0 are. As a tool

for eliminating undesirable choices. let us list some properties which power spectrum estimators of the form

S(e?f . x) = x"Q(0)x (121)

should enjoy.

Pos:(tivity. The power spectrum should be nonnegative real.

S(e? . x) >0 (1

[ 443
to

This condition will hold 1f the matrix Q(f) is positive semidefinite. We will use the notation
Q) 2V (123)

for this.
The rest of the properties we shall list all involve linear transformations on the data vector x.
Amplitude Scaling. If the signal x is multiplied by the scalar g, then the power spectrum should
be multiplied by lu|*. Therefore,

S(e? ux) = Ipl"‘b;(ejo.x)A (121}

This property holds for any quadratic estimator.

Modulation Invariance. Suppose we construct a signal
ye = €%z, (125)

This is called modulation and shifts the signal in frequency by the angle ¢. To see this. consider the

autocorrelation sequence
—_ (t4m-—-m)¢
E[y(#my;,] b (-J ) b ['rl+n1‘ry'n]

(126)
= elter,
Taking Fourner transforms yields the frequency domain equivalent.,
. @ \ A .
Sy e7%) = Spp(e? 2y (120
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For finite data. the linear transformation in equation (125) has matrix representation
y = D(¢°)x, (128)
where
D(e7%) = diag[l.e/®,e7%¢ . e/(N-D9] (129)
The estimator property consistent with equation (127) is

S(e?%, D(e7°)x) = S(e/?=9) x). (130)

We shall call an estimator with this property modulation tnvariant.
If Sg(e??,x) is an estimator which does not have this property, then we can construct a one-

parameter family of estimators

So(e??.x) = So(e?®*°), D(e?®)x). (131)
There is no a priort reason to prefer one member of the family over another. The average
S(e??,x) = / So(e?, x) 5o (132)

would be modulation invariant. Modulation invariance is not unique to quadratic estimators. Most common
autoregressive estimators have the property, even when they are constructed from the normal equations of
linear prediction.

J-Symmetry. Suppose we construct the time-reversal of the signal {z.}:

YVt =T (133)
Then
Eyesrys =T-k =Tg (134)
and
Syy(e’?) = Sex(e99). (135)

This produces something different only if the signal r is not real-valued. As estimator version of this is

S(e’o.Jx)zS‘(e"o,x). (136)
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We will call such as estimator J-symmetric. The matrix

O
J = o (137)
1 O
reverses the components of any vector to which it is applied.

Band Limiting. Let y, be the signal generated in the ideal experiment of Figure 1. This is that

part of the signal {z;} which lies in the band B(¢). Then
Syy(e) = | Hp () Sia(e?)

_ {su(ef"), 8 € B(s)
~ o, 6 ¢ B(o).

It is (unfortunately) impossible to generate any value of y, from a finite record of the signal {z,}. We would

(13%)

like to write

y= Pgz, (139)
where Ppg is some matrix which projects the data {z,} onto the “subspace of signals lying in the band B(0)."
Equation (139) is exact only in the infinite dimensional case. If it held in the finite dimensional case, we

could demand a property of the form
S(e’?, Pgx) = Hp(e')S(e?, x). (137)

Although this property is unattainable with finite data, our estimator should approximate it. To the extent
that we can construct some family of “bandpass filtering” projection matrices for which this holds down to
a certain bandwidth, then we can say that we have “resolution” to that bandwidth. Without it, we can
construct estimators which enjoy all the properties previously mentioned but which are trivial. An example

of such as estimator would be
S, x) = |Ixi*.

We shall not demand as yet that our estimator enjoy all the properties mentioned in the previous
section. To begin. we require a quadratic estimator which is positive and modulation invariant. With this
minimum requirement, we prove the following representation theorem.

Representation Theorem: Every non-negative, quadratic, modulation invariant power spectrum
estimator has the form

S(e?®.x) = ||V D(e~*")x]|°. (141)
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where 1" is an m x N complex matrix having rank m and D(e’%) is defined in equation (129).

Proof: If the estimate is quadratic, then
S(ei, x) = x*Q(8)x,
and if it is also nonnegative then

Q)20
for each §. In particular, Q(0) > 0 and can therefore be factored as
Q(0) = V"V,
where V7 is m x N and
m = rank Q(0).

If the estimator is modulation invariant, then
[D(e7?)x]"Q(8)[D(e?®)x] = x™Q(0 - &)x

for all x, 8, ¢. This implies that
Q(8 ~ ¢) = D™(2*)Q(8) D(e’®)
for all 8, ¢. Take 8§ = 0 and reverse the sign of ¢ to get
Q(¢) = D(e™7%)Q(0) D(e~7?)
= D(e??)\V*V D(e~7?).
Combining equations (144) and (142) yields
S(e?®,x) = x*D(e?*)V*V D(e™7%)x

= ||V D(e~1")x||*.

4.2 Multiple Window Interpretation

(142)

(143)

(144)

(1453)

The estimator of equation (141) can be understood as the composition of three operations. Multi-

plying the data by D(e~?%) is demodulation, or shifting in frequency, so that what was at angle € is now at

zero. Operating on the result by V is akin to passing the demodulated data through a bank of m lowpass
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filters. The average energy of the resulting outputs is estimated by taking the norm squared. This yields an
estimate of the power in the vicinity of 6.
We can put the computation of S(e’f,x) in another way which allows for the use of an FFT

operation to provide samples. Write

m N-1 2
S(cie,x - H‘ D(e™7%)x Z{ Z e—Jko Vk-l’k” ) (146)
u=1l k=0

In this form, the estimator is seen to be a generalization of the classical periodogram, which is

N-1

F 1 L -
Si(ef? x) = 7\—1 kE_,, Ire JH‘ . (147)
In this case, m = 1 and
, 1 T n
Ve —1", (148)

where

1T201.1,...,1). (149)

If the data is first “windowed” by multiplying pointwise with a window sequence, then we will have the

periodogram with window
. 1, N= 2
Su(e??, x) = -}\7‘ .rkwke"“l . (150)
k=0

—

The general quadratic, positive, modulation invariant estimator in equation (146) is simply an average of m
windowed periodograms. For this reason, it is called a multiple window periodogram. Since it amounts to
the sum of m periodograms, one can efficiently obtain samples of S(e7?,x) with spacing 27/N by employing

m FFT operations.

4.3 J-Symmetry
We shall call any estimator of the form in equation (141) a natural estimator. It is completely
characterized by the mx N matrix V. This matrix is, however, not uniquely determined by the estimator since
multiplication on the left by a unitary matrix U will produce V' = U’V and leave the estimate unchanged.
If U is 1in x m and
Ul =1, (151)
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then

||V D(e=7%)x]|)” = ||UV D(e=i%)x||*. (152)

In general, the matrices 1" and 1"’ generate the same natural estimator if and only if there exists a unitary

matrix " for which

Vi=UV (153)

This observation is relevant to the following question.
Under what conditions is a natural estimator J-symmetric—i.e. it satisfies the identity (136)? If

we assume that both equations (136) and (141) hold. then
v D(e=#*)Jx||* = ||V D(e*)x||* for all 6.x. (154)
We make the observation that the matrices defined in equations (129) and (137) satisfv
D(e=9%)J = ¢~ N=18 1 D(e2%). (133)
Thus the estimator is J symmetric if and only if
HVJD(e-’Ao)xH2 = HVD(e”)tz for all 4, x. (156)

In other words, V' = VJ produces the same estimator as does V. It must therefore have the form "/ = UV
for some unitary matrix U.

In summary, a natural estimator is also J-symmetric if and only if
Vi=UV (157)
for some unitary matrix U.

4.4 The Mean of the Estimator

The J-symmetry and modulation invariance properties provide gross information about the form
(141) of natural estimators and the matrix V' (equation (157)). We do not as yet have a tool for understanding
the resolution or frequency discrimination properties of the estimator. Intuitively, we know that the rows of

V" can be thought of as FIR lowpass filter responses and as window functions. The resolution would then
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be somehow related to the bandwidth of the frequency response functions of these m filters. But why use
m competing lowpass filters instead of one “good” one? In order to come to an understanding of these
phenomena, we are led to evaluate the mean and variance of natural estimators. The mean will depend on
S(e’?) and the matrix V. The same will be true of the variance provided we make the assumption that the
signal r is Gaussian so that we can characterize fourth moments in terms of S(e’?).

Since the estimator S(e’o,x) is quadratic in the data vector x, its expectation will be a lincar
functional of S(e’?). We shall construct two expressions for this.

Let R.. be the covariance of the data vector x:

To -1 - ToN4l
r : ¢
Rez = E[zz™] = ! . (158)
. .- - r__l
N s ™ ro

Using the notation of Section 3.0, we may use the Fourier representation (43) to obtain a representation for

the matrix R,.:

R.z = /s,,(ei")\y(e”)w*(ef’)g—i. (159)
Now let us compute the mean of S(e’?, x):
E[S(e??,x)] = E[x*D(e?*)V*V D(e™7?)x]
=Tr[D(e’*)V*V D(e™'*)R..] (160)

= Tr[VD(e™7*) Ry D(e°) V7).

This is the first expression for the mean, and it uses the covariance matrix R;;. This can be reduced to a

linear functional of S(e?) by using the representation (159) for R... The result is

E[S(e” x)] = /S(ej’)||V\Il(ej(9‘°))H2 g—j (161)
This bears comment. Let
Wi(z)
W) =vVi(z)= : . (162)
Wn(2)

Then 1V, (e’?) is the frequency response of the ut! row of V, which we think of as a lowpass filter. The mean

of the estimate is the convolution of the true spectrum with the positive real function
2 m 2
(e = Z NACHE (163)
u=t
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This is the sum of the magnitude-squared responses of the m lowpass filters. If these filters have small
bandwidth. then E[S(e/?.x)] will be a weighted average of the values of the true spectrum on an interval

of the same width centered at §. This is the means by which we can judge the resolution of the estimator.

4.5 Variance and Mean-Squared Error of the Estimator
We must assume that the data vector r is real valued and Gaussian with mean vector 0 and

covariance matrix R,.. If

Q=4+4+JB (164)
is Hermitian, then the random variable
y=x7Qx =xTAx (165)
has mean and variance
Ely] = Tt{QR.z] = Tr[AR:z) (166)
var(y) = 2Tr[(AR::)?]. (167)
Our estimator has this form. with
Q(6) = D(e?*)V*V D(e™7%) (168)
and
1
A(9) = 3 [Q(8) + Q(-9)]. (169)
Therefore,
L 1
var §(e/*, x) = > Tr[(Q(0) + Q(-0)) Rzs]”. (170)

If we expand the square in this expression, we will arrive at four terms. It turns out that two of these have

the same trace, and the remaining two have the same trace. Define

M(8) = VD(e )R, D(e?)V* (171)
N(0) = VD(e?* )R, D(e™ 18 V™. (172)

Using the trace identity
Te(FG) = THGF) (173)
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liberally. we see that

T [Q(6) Rex Q(O) Rez] = Tr[M?(6)] (174)

Tr [Q(0) Rez Q(—8) Rez] = Tr[N(-6)N(6)]

Tr[Q(—0)Rz:Q(8)Rzz] = Tr[N(O)N(-0)]

= Tr[N(=0)N(6)]

Tr[Q(—0)RezQ(—0)Rez] = Tr[M?(-0)].

The middle two terms have the same trace. In addition, M ?(f) and AM?(—6) differ only in imaginary part.
Since they are both Hermitian, they have real trace. and therefore they have the same trace, Combining all
this vields the variance expression

var 5(e’%, x) = Tr[M3(6)] + Te[N(8)N(-6)]

= T [A1(6)M*(6)] + T[N (8)N*(6)] (175)

M M
=) [IMak(0)? + Nk (8))7].

p=1k=1
We can put this in terms of S(e/?) by using the representation (159) for the matrix R, in the definitions

for M(6) and N(6). This yields

M, (8) = / Sez(e?YW, (70— W (e (0= #)) i;% (176)
_ 3B+ &) pyx(pi0-0)y 98 -
Nue(0) = | Szo(d)W,(e YW (e ) 5 (177)

Of the two variance terms, the one involving Af(6) will likely be much greater than the one involving
N'(8) because of the misalignment of the window response functions in equation (177). From equations (160)
and {175), we can write

E[S(~%. x)] = Tr[M(0)] (178)

var[S(e? . x)] > Tr[A7(0)]. (179)
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The inequality is off by the term involving N (6). These can be used to construct a lower bound on mean-

squared error:
MSE(0) = E[S.-(e?°) = 5(e'®, x)}"

= [Sez(e’%) - E’.S"((*:jo,x)]2 + var [S(e-’o,x)] (180)

> [Srz(e?®) = TrM(8))® + TrAL2(6).
Let the eigenvalues of M (6) be {uy,...,4m}. Then

M A
MSE(9) > [Sea(e®) = Y| + Y ui. (181)
k=1 k=1

The minimum of this expression, as a function of the eigenvalues, occurs when

Srr(ejo)

—rm for each k. (182)

He =

Placing the minimum in the right-hand side of (171) produces the inequality

S2.(e7%)

Since M(#) is Hermitian. it can have identical eigenvalues only if it is a scalar multiple of the identity—i.e.

Szz (ejo )

M(8) = VD*(A)R.. D(O)V* = ——

I (184)

The lower bound (183) provides a reason for using more than one window. (m is the number of

windows and the number of rows in V)
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5.0 SPECIAL QUADRATIC ESTIMATORS
The spectral estimator

S(e?®.x) = ||V D(e~%)x])? (185)

of equation (141) composes three operations: demodulation, lowpass filtering, and energy measurement. It
is interesting to compare this chain of operations with a superheterodyne radio receiver. The heart of such a
receiver is a high quality bandpass filter (the IF amplifier) with a fixed center frequency and bandwidth. The
rest of the receiver merely accomodates this filter. The incoming broadband signal is frequency shifted so
that the desired band is moved into the IF band. On the other side, the output of the IF filter is “detected.”
The sensitivity of the receiver depends mostly on the quality of the IF filier. For our quadratic spectrum
estimator, the quality (variance and resolution) depends entirely on the choice of lowpass filters represented
by the rows of the matrix V"

In this section, we will present some likely choices of V in a somewhat developmental order beginning
with rank-one estimators. Since several classical estimators have the form of equation (141), we will display

them when appropriate.

5.1 Rank-One Estimators
For a rank-one estimator, there is but one lowpass filter, and the matrix V' is a row vector. The

estimator has the form of equation (150). That is.

N-
$(6,z) = —] Z Iiwpe J“] (186)

and

Vi — (187)

There is a choice of interpretations.

As before, we can think of demodulation, followed by lowpass filtering. In this interpretation, the
matrix V represents a lowpass filter pulse response sequence, and we are using only one value of the lowpassed
output sequence to estimate power.

The more common point of view is that we first “window"” that data r; by multiplying by wy then
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demodulate and perforrn a time average. The shape of the window function
N-1
W)= D uge ¥ (188)
k=0

will affect both the resolution (bias) and variance of the estimate. The windowing operation may be consid-

ered a form of frequency zveraging applied to the data. Using the inverse transform

wy = / W (el?)el*? ‘;—f;. (189)

we see that the vector whose elements are w;r; can be written

/ [D(e?®)x] W (e??) ;—i%. (190)

This is a weighted average of the frequency translates of the data, D(e/®)x. Therefore, to the extent that

the window function W (e’?) is dispersed, frequency resolution is degraded.

5.2 Low-Rank Estimators and the Time Bandwidth Product

The virtue of using more than one lowpass filter—i.e. of using a rank m estimator with m > 1—lies
in the potential of decreased estimator variance. Up to a point, the mean-squared error should be inversely
proportional to m. For given resolution requirements, however, there is a limiting value of m beyond which
no improvement can be expected. This limit is a “time bandwidth product.” In this section, we will put
forth an argument for this assertion.

The choice of normalized bandwidth 3, with
0<p<l,

is somewhat arbitrary. It is a rough measure of the resolution in frequency we expect from our spectrum
estimator. If we assume that the power spectrum is essentially constant on intervals of length 273, then
an estimate of the power in the band |0 — 6] < 37 serves as an estimate of 8S::(e%°). In other words.
we get an estimate of S, (e’%) by estimating the power in a band about 5. This estimate will improve as
we increase 3. but only at the expense of resolution. This tradeoff is inescapable, and the sum of ill effects
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dimmishes only with increasing data length V. Tor modulation-invariant estimators. the problem can be

reduced to the estimate of power in the low-frequency band
18] < 3. (191)

(with 8, = 0). This is the passband of the bank of lowpass filters described by the rows of the matrix 1"
For convenience, call this band baseband.

For the purpose of estimating baseband power

=
3

/é‘u(e"’)i2 ~ 3S::(e’9), (192)
2r

_‘37

we would like to isolate the baseband component of the signal. But of course, we have only a finite time
window's worth of data. We are caught in a classic dilemma—trying to isolate a signal (or a signal component)
in both time and frequency. The more concentrated a signal becomes in one domain. the more dispersed it
must be in the other. Although we cannot do this simultaneous isolation exactly, we must do it approximately
if we are to do spectrum estimation.

Both operations—isolation in time (windowing) and isolation in frequency (lowpass filtering)—are
projection operations. For the moment, let z be the entire WSS signal. Let Pr be the projection which

zeros out all values of the signal except those in the data window:

_Jze, 0<kE<N-1
(Prz) = {0. otherwise. (193)
Let P be the ideal baseband filter:
(Paz)e= Y hizia, (194)
l==00
where
- ke _ |1, |8l < B7 .
Z e - {0, otherwise. (193)
k=-00
Each of these cpciators is an orthogonal projection:
P=P?= p*. (196)

But they do not commute. (The baschand component of the time windowed signal is not the time restricted
baseband component.) If they did commute, then the product
P=PrPq (197)
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would also be a projection. This projection would simultaneously isolate a signal component in both time
and {requency.

In certain respects, however, the products are approximately equal:
PrPq = PqPr, (198)

and the product is close to a projection having rank N3, the time-bandwidth product. This assertion can be
supported in various ways, each of which corresponds to known multiple window spectrum estimators. e
will sketch some of these in the following sections. For the moment. let us consider the consequences—on
estimator variance—of the assumptions that equations (197) and (198) hold.

Suppose that

P = PrPq = PaPr, (199)

is a rank m = N[ projection, and assume that the VWSS signal r is Gaussian. Then Pz is Gaussian and is
concentrated on a subspace of dimension m, even though there may be N values of the vector which differ
from zero. At most m scalar functions of Pr can be statistically independent. In particular, at most m
independent estimates of baseband power can be obtained, and therefore we can expect an improvement of
1/m in estimator variance when these are averaged. But we cannot expect any more than this.

If we actually had our hypothetical projection P, how should we estimate S;;(e’°)? If F = PrPq,

then Pr = Pry, where y is the WSS baseband component of the WSS signal z. Therefore,

fx
Ely}) = / s,,(ef‘)g ~ BS::('°) (200)
-0

(assuming that the spectrum is fairly constant on intervals of width 287). Now, using the definition of Pp,

1 1 =
< 1PrylfF = ﬁgy;. (201)

If we use this as an estimate of the variance of y; and combine it with equation (200), we get an estimate
for S;-(e?%):

- 1 " 1 "
5(e’%) = TV_,;”PT)'”' = Wllpxll’- (202)

This estimate is obviously quadratic in the data and has rank m = N7, the time bandwidth product.
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We have been using the notation r for the entire signal
r={r;:—x<k<x}.

The data vector which appears in the estimator (185) is there‘ore

Io
= FTr, (203)
IN-1
where
FT = [ 1) (194

is an .\ x x matrix. The connection between the estimates (185) and (202) would be
S’ FTx) = |VFTx|]* = \Lj [| Px][*. (205}

This would determine " up to multiplication on the left by an orthogonal matrix. via

I
/TveT o
FVIVF? = N P
and therefore (since FTF = 1)
1
7Ty — Tpr 9
Vil A\'JF PF. (206)

This formula of course involves a projection P which does not exist. It is useful only for guessing what

should actually be done. Let us now examine some approaches.

5.3 Time Division Multiple Windows
In {6], Welch proposed a quadratic multiple window estimator in which the matrix 1" would have

the form

v=1 ... . (207)

The first row contains a symmetric window of length much less than V. followed by all zeros. The remaining
reaws are shifts of the first row. by equal amounts. so that the last row is right yustified. This matrix satisfies

the J-symmetry condition




with {" simply an m x m version of J. Let us give an interpretation of this estimator.

As before, let y = Pnr be the baseband component of the WSS signal r. Since y is bandlimited. it
is completely determined by the subsequence of samples spaced 1/3 apart (assuming that this is an integer).
Loosely speaking, then, from every large set of \' consecutive values of y, only N3 are useful. Moreover,
if S(e’%) is constant on baseband, then the subsamples of y (at spacing 1/J) are indeed uncorrelated.

Furthermore. the covariance matrix of
Yo
=FTy (20%)
YN -1

should have m = N J essentially equal dominant eigenvalues, with the other N — m = (1 — 3).N very close
to zero. This suggests that the baseband power estimate
1 m-1
— : 20m
— 2 Vi (
k=0
would have about the same variance as an estimate which used all N values of y but one-m'™" the variance
of an estimate which used only one value of y.
The Welch estimator approximates the scenario we have just described. The first row of 1" contains

a properly normalized lowpass filter unit pulse response. Because of the successive shifts, the vector
VFETz

represents m samples of the output of an FIR filter, equally spaced with spacing

1N
B~ m’
so that
1 m-—1
311\'f‘fx||2:;Zy§,3. (210)
k=0

Here y, is the FIR lowpass filter output, approximating the actual baseband signal values used in the
estimate (209).

In this formulation, one lowpass filter 1s used whose passband is the entire baseband. One then
samples the output signal at the Nyquist rate to get (in the Gaussian case) something close to statistically
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independent and identically distributed random variables. The number of these is approximately N 3, the

time bandwidth product.

5.4 Frequency Division Multiple Windows
The estimator of the previous section uses N3 output samples of a single lowpass filter of bandwidth
J. The other extreme is to use an output sample from each of N3 narrowband filters, each having bandwidth
1/N. This is the smallest bandwidth for which the Nyquist subsampling rate for the output signal woull
deliver at least one sample in a block of .V consecutive values. Since we must limit ourselves to FIR filters of
length .V, we cannot achieve a perfect decomposition into narrow bands in this way. We shall see, however.
that N3 is an upper bound on the number of length N FIR bandpass filters for which
(1) the pulse response sequences are orthogonal, and
(it) the individual passbands are inside baseband.
For white Gaussian data, the first condition would make the output samples of any two bandpass filters
uncorrelated and, therefore, statistically independent.
The simplest example of this approach is derived from the length .V discrete Fourier transforms.

We shall begin with this case and then attempt to generalize. To facilitate our discussion, suppose that
NB=m

is a positive odd integer. Construct V by letting its m rows consist (in any order) of normalized rows of the

DFT matrix:

A 1 .
v = mﬂu(e-i ) i< ~2"1 (211)

where 1 (see equation (149)) is the vector whose elements are all one. The normalization is chosen so that

the estimator is unbiased in the white noise case or, equivalently,
Tr[VV*] = L. (212)

The row V' is the unit pulse response of an FIR bandpass filter with passband




having normalized bandwidth 1/N. The m rows of V' are orthogonal and., in fact.

1
,'Eltz s 2 3
’ NBI (214)

Therefore this example meets the two conditions we have specified, with a liberal interpretation of filter
passband.
The spectrum estimator constructed with this choice of V is intimately related to the periodogram
(to which it reduces when m = 1). Letting S; be the periodogram of equation (147), our estimator becomes
S(e?? x) = # Z Sy(e?l=INY 5. (215)
lil< 2
To obtain a sample of S, one takes the average of m samples of 5.
Toeplitz Quadratic Estimators. Generalizing the notion of averaging the periodogram leads to

Toeplitz estimators. Let

H(e®) = S hyei*0 (216)

k=—co

be nonnegative real and concentrated in the vicinity of 6 = 0. Let
- . 1 .
Siex) = < [17D(e=7%)x|’ (217)
V!

be the periodogram, as in equation (144). Consider the averaged periodogram

. L d
S(e??,x) = E/H(e”)sl(e"(""’),x) Q—f. (218)
This estirnator is quadratic and has the form
S(e??,x) = ||VD(e"”)x||2,
where
Q=1\*v
= ﬁ/”(e”)D(e“"")l 171)((3”);—:’r
R (219)
T T dé
- je Jjoygpr(piey L8
= J‘\,/Il(e W(e!® W™ (e )217.

-
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This matrix is nonnegative definite and Toepli!z:
1T do
Qu = V] H(el?)emretk=0 o = hi_k. (220)
] n
-

If H(e’®) is composed of m delta functions (and is therefore concentrated on m points, as it would be for
the estimator of equation (215)), then @ has rank m. If, on the other hand, H is positive on an interval.
then Q will be positive definite and have rank N. Thus, averaging the periodogram increases the estimator
rank. (Recall that averaging the data, as in Section 5.1, does not increase rank.) All nonnegative definite
Toeplitz matrices have the representation (219) or (220).

The spectrogram of Granander [19] is Toeplitz in our present sense. Consider once more the
problems of estimating baseband power and then using this to estimate the power spectrum at § = 0 as in

equation (202). The operator P in that equation is the approximate projection
P = PrPq,

where Pq is the Toeplitz (lowpass filter) projection of equation (194) and Pr is the projection of rank N

which zeroes out all sequence elements except for those in the range 0 to N — 1. This can be written
Pr=FFT,

where F is given by (204). It follows that

FTpr=FT,
and therefore the quadratic form in equation (206) is

Q=VTV = — FTPrPyF
Np
) (221)
= — FTPyF.
NG PnF
This matrix is a scaled ¥ x N diagonal block of the Toeplitz prection operator Pn. It is also identical to

the matrix of equation (219), provided /7(e??) is the ideal bascband filter. And, finally, coming full circle. if

R is the matrix of equation (17), then




Now @ is positive definite and has trace one. However, N —m = N(1 — 3) of its eigenvalues arc very close
to zero, while the next are close to 1/m. Thus. Q is close to a rank m matrix. Roughly speaking, this means
that estimator error variance can be decreased by the factor 1/m only, even though the actual rank of @ is
much larger.

Toeplitz quadratic forms are natural choices in view of the fact that every linear functional of the
power spectrum is the expected value of a Toeplitz bilinear form in the infinite data sequence (Section 4.0).
It has been argued here that a desirable quadratic form for estimating baseband power would have the

properties
Q= 1V"V is Toeplitz

rank(Q) =m=Ng3 (223)

VV*= L1 (orthogonal filter responses).

Our first example, equation (211), has these properties. In general, if V*V' is Toeplitz. then the estimator
is a smoothed or averaged periodogram as in equation (218). If, in addition, it has rank m, then it is the
average of m samples of the periodogram. Finally, it can be shown that, if V"*1 is diagonal in addition to
the other two properties, then the samples of the periodogram must be separated by integer multiples of
27 /N. For the problem of estimating baseband power, these samples should be in baseband which has width

2xm/N. Thus our example is essentially unique<#Of course. multiplication on the left by a unitary matrix
Vi=UV

will produce the same estimator. If Q satisfies the conditions of equations (223), then P = mQ is a Toeplitz

orthogonal projection. Thus
S(e’ . x) = ||V D(e)x||*
1 ‘ (224)
= —||PD(e=7*)x||*
m

is a projection-based estimator. Finally, every symmetric real Toeplitz matrix Q commutes with J. This is

enough to make Toeplitz quadratic estimators J-symmetric in the sense of Section 4.3, since

Q=JQJ
implies
(vIhy(vi)y=vvy,
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which implies in turn that

V=0V

for scme unitary matrix U.

Non-Toeplitz Forms. Now let us relax the requirement that V*V be Toeplitz. We require the
maximum number of orthogonal filters, whose passbands are in the baseband. Two orthogonal filters will
give independent output samples in the Gaussian white data case. (Essentially, the power spectrum must
be nearly constant on bands of normalized bandwidth 3.) Therefore we can decrease error variance by the
factor 1/m, where m is the number of orthogonal filters we can squeeze into the baseband. What is required
at this point is a precise statement of what this means.

Let

N-1

H(e?) = > hye ¥ (225)
k=0

be the frequency response function of an FIR filter. A minimum requirement, if this filter is to be a baseband

filter, is that, for some choice of ¢ > 0,

Bx L 4

av2 df 2 df
/ |H(e’o)|22—”2(1—c)/|H(e’0)|'2—7r. (226)
-8 -

In other words, most of the filter energy should be in baseband. This is a quadratic inequality and can be

written

hTRh > (1 — ¢)hTh, (227)
where

h=1lho hy--hyo]” (228)

and R is the Toeplitz baseband autocorrelation matrix of equation (17).
Each row of V corresponds to a filter response. The two conditions together lead to the following

problem. Find the largest (meaning m) m x N matrix V for which
VIR-(1-0IlV* 20 (229)

and
l",* = —1 I 9
. (~30)
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The eigenvalues of R are

>
—to
v
>
1313
v
v
>
ZIJ
Vv
e

But we know the sum of these eigenvalues, using equation (17), to be
N
Tr(R) =D A = N3. (231)
ix]
Thus. for ¢ sufficiently small. at most N 3 of the eigenvalues of R can be greater than 1 — ¢. The inequal-
ity (217) cannot hold if fewer than m of the eigenvalues of R — (1 — ¢)I are nonnegative. Therefore, N3 is
an upper bound on the rank m for this problem (when ¢ is sufficiently small).
A stronger statement of this situation is found in the following.

Theorem: Let M be the m x m matrix on the left of inequality (229), and let A/ have eigenvalues

B2 p3 2 2 p (232)
Then if equation (229) holds,
AZ—(1—¢)
psinl=d (283)

for each i.

The proof of this theorem involves a generalized Rayleigh quotient inequality argument. Of course,
M is nonnegative definite if and only if all m of its eigenvalues are nonnegative. Equality in (233) can
be obtained by letting the columns of V* be eigenvectors of R, in particular those having the m largest
eigenvalues. This choice produces the Thomson spectral estimator, and J is symmetric. (This theorem
addresses the problem in Section 2.5.)

In conclusion, we have argued that, for a specified resolution g, there is a limit to the reduction
in error variance possible with multiple window quadratic estimators. The rank m should be approximately

the time bandwidth product N 3.
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6.0 CONCLUSIONS

The basic problem in classical spectrum analysis is to project a time series onto a timelimited
and bandlimited subspace where power can be estimated. Such a subspace can only be approximated. so
the problem can be rephrased as one of constructing approximating subspaces and projections onto them.
The first obvious approach i1s to build a frequency selective FIR filter, and the natural extension of this
approach is to build a frequency selective linear transformation. In Section 2.0 of this chapter we have
followed this approach to its logical conclusion and found Slepian sequences as the appropriate sequences for
building a subspace that is timelimited and approximately bandlimited. In Section 3.0 we have rephrased the
problem of spectrum analysis as one of estimating parameters in a structured covariance matrix. Maximum
likelihood estimates of these parameters produce spectrum estimators which are essentially equivalent to
the multiwindow spectrum estimators of Thomson and to rank reduced versions of Daniell’s frequency
averaged periodogram. The maximum likelilhood spectrum estimatc: is a quadratic form in the data that
is formed by complex demodulating the time series, projecting it onto a low-rank subspace, and computing
its power in that subspace. The mean-squared errot of the estimator decreases inversely with the rank of
the quadratic form that is constructed in this way. In Section 4.0 we show that every quadratic estimator
of the power spectrum that is required to be nonnegative and modulation invariant must be a quadratic
form in a complex demodulated time series. This fundamental representation theorem characterizes a class
of admissible spectrum estimators. The maximum likelihood estimators are members of this class, but there
are others. They include all of the windowed and frequency averaged periodograms and others discussed in
Section 5.0.

From the point of view of this chapter, there is nothing very fundamental about uniform sampling,
nor is there anything very fundamental about a scalar index parameter for the data. This means that
our results extend to the frequency-wavenumber analysis of nonuniformly sampled space-time series. These
extensions, developed somewhat in [10] and [11], form the basis for a research program in the spectrum

analysis of multiparameter data sequences.
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